The living room is the space where the family gets together after a long day or where guests are first exposed to in the house. So, it is important to focus on the interior of the living room when designing one’s home.

Sustainable architecture

Sustainable architecture is architecture that seeks to minimize the negative environmental impact of buildings by efficiency and moderation in the use of materials, energy, and development space and the ecosystem at large. Sustainable architecture uses a conscious approach to energy and ecological conservation in the design of the built environment.

The idea of sustainability, or ecological design, is to ensure that our actions and decisions today do not inhibit the opportunities of future generations.

Energy efficiency

Energy efficiency over the entire life cycle of a building is the most important goal of sustainable architecture. Architects use many different passive and active techniques to reduce the energy needs of buildings and increase their ability to capture or generate their own energy. One of the keys to exploit local environmental resources and influence energy-related factors such as daylight, solar heat gains and ventilation is the use of site analysis.

Heating, ventilation and cooling system efficiency 

Numerous passive architectural strategies have been developed over time. Examples of such strategies include the arrangement of rooms or the sizing and orientation of windows in a building  and the orientation of facades and streets or the ratio between building heights and street widths for urban planning.

An important and cost-effective element of an efficient heating, ventilating, and air conditioning (HVAC) system is a well-insulated building. A more efficient building requires less heat generating or dissipating power, but may require more ventilation capacity to expel polluted indoor air.

Significant amounts of energy are flushed out of buildings in the water, air and compost streams. Off the shelf, on-site energy recycling technologies can effectively recapture energy from waste hot water and stale air and transfer that energy into incoming fresh cold water or fresh air. Recapture of energy for uses other than gardening from compost leaving buildings requires centralized anaerobic digesters.

HVAC systems are powered by motors. Copper, versus other metal conductors, helps to improve the electrical energy efficiencies of motors, thereby enhancing the sustainability of electrical building components.

Site and building orientation have some major effects on a building's HVAC efficiency.

Passive solar building

Passive solar building design allows buildings to harness the energy of the sun efficiently without the use of any active solar mechanisms such as photovoltaic cells or solar hot water panels. Typically passive solar building designs incorporate materials with high thermal massthat retain heat effectively and strong insulation that works to prevent heat escape. Low energy designs also requires the use of solar shading, by means of awnings, blinds or shutters, to relieve the solar heat gain in summer and to reduce the need for artificial cooling. In addition, low energy buildings typically have a very low surface area to volume ratio to minimize heat loss. This means that sprawling multi-winged building designs (often thought to look more "organic") are often avoided in favor of more centralized structures. Traditional cold climate buildings such as American colonial saltbox designs provide a good historical model for centralized heat efficiency in a small-scale building.